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The superposition of scalar and residual dipolar couplings gives  lytical transfer functions have been derived for isotropic, pl:
rise to so-called cylindrical mixing Hamiltonians in dipolar cou- nar, and dipolar effective coupling tensors9( 34, 35. For
pling spectroscopy. General analytical polarization and coherence  gpin systems consisting of four coupled spins 1/2 with arbitra
tre}nsfler functions are presented fpr three cyIancally coupled coupling constants, analytical transfer functions are on
spins 3 under energy-matched cor_ldltlons. In add_ltlon, the_transfer known for isotropic mixing experiments3, 37. In homo-
efficiency is analyzgd_as a fl_Jnctlon of the relative coupling con- nuclear Hartmann—Hahn experiments of partially oriented sa
stants for characteristic special cases. © 2001 Academic Press . - . .

Key Words: Hartmann-Hahn transfer; residual dipolar cou- ples @3), the size of chlar coupling (_:onStantS 1S t_yplcally .
plings; analytical transfer functions; TOCSY; DCOSY. the same order of magnitude as the size of the residual dipc
couplings. The class of effective coupling tensors created
the simultaneous presence of isotropic and dipolar couplir
corresponds to the anisotropic Ising—Heisenberg mod@l (
and has also been denoted cylindrical coupli8g).(For two

cylindrically coupled spins 1/2, the derivation of analytica

Homonuclear and heteronuclear coherence and polarizatipihsfer functions g, 23, 33 is relatively simple because all
transfer under energy-matched conditions is an important tq@jms of the coupling Hamiltonian mutually commute. How
in both liquid and solid state NMRL-9). Such homonuclear gyer, this is not the case for more than two cylindricall
and heteronuclear Hartmann—Hahn type experiments cand3gpled spins. In the following, analytical polarization an
classified according to the form of the coupling tensors in thgherence transfer functions are presented for spin syste
effective mixing Hamiltonian §, 10. For example, isotropic ¢onsisting of three spins 1/2 under general cylindrical mixir
coupling tensors are created by heteronuclear isotropic mixiggndition with arbitrary coupling constants. In addition, th
sequences9( 11,13 and by most homonuclear Hartmann-gfficiency of polarization and coherence transfer is analyz

Hahn sequences if applied to scalar coupled spin systef§s 3 number of characteristic coupling topologies.
(5, 6, 9. Effective planar coupling tensor&J) are typical for

most heteronuclear Hartmann—Hahn experimehtd (9 and
for homonuclear Hartmann—Hahn experiments that are based

on RF irradiation at multiple frequencie$4-19. Recently, For a two-spin system the anisotropic Ising—Heisenbg (

residual dipolar couplings of partially ordered systems ha e cviindrical i i the f
found wide use in high-resolution NMR of biomolecul@9¢ \:10():y indrical 33) coupling term can be expressed in the forr
d

23). The simultaneous presence of isotropic couplings a
residual dipolar couplings can give rise to a large variety of
effective coupling tensors. ey = 2mI7(LS + 1,S) + 2mIH.S, [1]

In principle, polarization and coherence transfer functions
that describe the dynamics of polarization and coherence trawith the planar and longitudinal coupling constadtsandJ",
fer can be simulated numerically for arbitrary coupling tensorsspectively. Ford” = 0 Eq. [1] reduces to the longitudinal
(8, 9, 24-3). However, analytical transfer functions are alseoupling term 2rJ'1,S, (9, 10 that is characteristic for the
highly desirable in order to understand the characteristic tramgeak coupling limit and that corresponds to the coupling ter
fer dynamics. For a two-spin system, analytical coherence amicthe standard Ising model HamiltoniaB8-4Q. ForJ" = 0
polarization transfer functions are known for a large range tfe coupling tern¥., represents a planar mixing Hamiltoniar
practically relevant effective coupling tenso 23, 32,33 (9, 10, 13 which corresponds to the coupling terms in ¥
For three-spin systems with arbitrary coupling constants, anmaedel @2). ForJ" = J° the coupling tern#(., represents an
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isotropic mixing Hamiltoniang, 9, 11, 12 which corresponds

to the coupling term in the Heisenberg or Heisenberg—Dirac—
Van Vleck model Hamiltonian4l1, 43. For J- = —2J° the
Hamiltonian¥(.,, represents a dipolar coupling terdj.

The combination of an (effective) isotropic coupling term
Hiso = 2@I{1,S, + 1,S, + 1,S,} and an (effective) dipolar
coupling term of the formity, = 27#D{21.S, — .S, — 1,S}}
also results in a cylindrical mixing Hamiltonia#., in the
form of Eq. [1] with

J:=J+ 2D, J°=J-D. [2]
For a two-spin system the coherence and polarization transfer
functions for cylindrical mixing can be derived in a straight-
forward way 0, 23, 33. A summary of the relevant transfer
functions using the above nomenclature is given in Table 1.
For a longitudinal initial operatok = 1,, the transfer functions
are independent of the longitudinal coupling constiinbe-
cause the coupling termm"1,S, commutes both with, and
with 27J3° (1,S, + 1,S,). On the other hand, transfer functions
for the transverse initial operatafs= |, or |, depend on both

J” and J". This is illustrated in Fig. where characteristic
transfer functiondl,, s, andT,, s, are shown.

THREE-SPIN CASE

For a spin system consisting of three coupled spins 1/2, the
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anisotropic Ising—Heisenberg or cylindrical mixing Hamilto- rig. 1. Ppolarization and coherence transfer functions of a two-spin syste

nian has the form

3
P+ Tl + 2 0 3510,

i<j

3
Hey =27 >, J

i<j

[3]

with the effective planar and longitudinal coupling constaljts

under various cylindrical mixing conditions (see Eq. [1]). (A) The polarizatio
transfer functionT,,_s, is independent 08" and only depends on the planar
coupling constand®. (B) In contrast, the coherence transfer functidins,s, =
T,,—s, depend not only od” but also onJ-. The curves represent characteristic
coherence transfer functions fdf = —2J° (dipolar mixing, —- - —), J*
—J° (———), 3" = 0 (planar mixing, - - -)J- = J” (isotropic mixing, —),
andJ" = 4J° (—--).

and J;;, respectively. In analogy to the case of three coupled
spins under planar or dipolar mixing conditions, polarizatioblock structure in the basis of the product functidnsc)
transfer functions can be determined if the eigenvalues afwdth magnetic quantum numben = 3/2), |Baa), |aBa),

eigenfunctions of¥.,, are known {9, 39. As ¥, commutes

laap) ith m = 1/2), |aBp), |BaB), |BBa) (with m =

with F, = 1, + |,, + |5, the mixing Hamiltonian assumes a— 1/2), and |BBB) (with m = — 3/2). Each block only

TABLE 1
Coherence and Polarization Transfer Functions T_g for Two
Spins | and S under Cylindrical Mixing Conditions

= Ty, = 1 — sin(md“7)sin(wI")

T, = 1 — sii(md°7)
Tiose = Tiyos, = sin(md“7)sin(wd™7)
T,.s, = SiN(wd"7)
1 .
Ti—ans, = ~Tioans, = 2 {sin(ar(3* + I°)7) + sin(w(I* — I°)7)}
1 . .
Tioas, = ~Tias = > {sin(w(I* + IP)7) — sin(w(I* — I°)7)}
1
Tas = —Tias = > sin(27J" 1)

connects product functions with equal magnetic quantum nu
berm. Form = =+ 3/2, the resulting X 1 blocks are

(312 —

(=3/2) —
cyl -

cyl

m
¥t E(Jliz'*"]lis""llia):)\m [4]

where A, corresponds to two degenerate eigenvalue$(gf
Form = = 1/2, the blocks have the form

P P

2, I I
- P P

?f(cwllz) =ma| 12 22 o],

‘]53 JSB 2‘3

(12 —
cyl

#’ [5]
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with In special cases (e.g., for isotropic mixing with = J;) when
c{™ = c{™ = ¢{™ = 0 for all combinationslfnn), Eq. [11]
Jh— 3k =k is to be replaced by
=T (6]

Cii = 3,05, — D55~ A )

for {ijk} = {123}, {231}, and {312} and with J; = J} and ¢ =3 30 — 3%.3°, — I35\ /m)
Ji = J;. The eigenvalues of thesex33 matrices can be found

using Cardan’s formuladb): ¢ = (I0)?2 = 23, + (X + ) (/M) — (A m) 2
[13]
A= — ﬁ +4 M cos((P) Equations [10]-[13] represent the eigenvector components
3 3 3 all cases where the eigenvalues (Eq. [7]) are nondegenerate
A o] T A #F A, # A3 # Ay In the practical calculation of transfer
Aoz = 20 g cos( i ) [7] functions this can always be achieved by a slight variation
3 3 3 the coupling constants. Based on the components of the e
_ envectors (Eq. [10]), an orthonormal eigenbasis of the mixir
with Hamiltonian(.,, is given by
@ = arcco —|q|3 , 8] V1 = laae)
2,5 Y2 = ai|Baa) + Bylapa) + vilaap)

E U3 = a|Baa) + BylaBa) + yo|aaB)
P=12 > 33— (2)2 - 3(35)2

i<j

Yy = as|Baa) + BslaBa) + yslaaB)

Y5 = as|afB) + BilBaB) + vi BBa)

and
s = azlaBB) + BolBaB) + voBBa)
1 1 1 -
a=3 {3?223 + 3035, + 353, — 3 JPIP0, — 3 35,3, U7 = azlaBB) + B3l BaB) + vi|BBa)
s = [BBB)- [14]
(8 1 12
+ > 2‘(3 DI 5 JFJ’) ~ 36 > (33, [9] In this eigenbasis, transfer functions
i#] i
_ Tr{B'U(r) AU'(7)}
For each eigenvalug; (Eq. [7]) the three components, Tas(7) = Tr{B'B} [15]
B:, andy; of the corresponding normalized eigenvectors are
given by between two operators andB can be calculated in a straight-
forward way because the propagator
a;=c{*®In;, B;=cn;, vy =c?n, [10] U(7) = exp{—i#HeyT} [16]
with is diagonal with U);; = (U)gs = exp{—iAet}, (U)z =

(U)ss = exp{—iA7}, (U)ss = (U)gs = exp{—iA,7}, and
(U)as = (U)7y = exp{—iAs7}.
With the help of the algebraic progravtathematicg46) we
™ = I0(Imn— I = IN) — TnZa + eIl + 20dlh derived compact analytical expressions for coherence and
+ (Sm— 30+ 3, - I (M) — (A/m)? [11] larization transfer functions of practical interest. All nonzer
polarization and coherence transfer functidnsg for A = 1,,
andA = |, are summarized in Tablesahd 3, respectively. As
the cylindrical mixing Hamiltonian is invariant under rotation:
around thez axis, the transfer functions,,, s are identical to
n = \(c)2 + (c(P)% + (c*?)2. [12] the transfer functiond,, s, where the target operat®’ is

and
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TABLE 2 cal to simulated transfer functions that were calculated num
Polarization Transfer Functions T,,,_s for a Three-Spin System ically using the program SIMONE2Q) (data not shown).
under Cylindrical Mixing Conditions In contrast to the case of two cylindrically coupled spins (c

Fig. 1A), the transfer of polarizatioh,,,_,, does depend on the
ratio J;/J{ of longitudinal and planar coupling constants in th
case of three coupled spins (cf. Fig. 2), because the planar
longitudinal coupling terms only commute in the case of tw

3
1
T =Th=1- > 5 Wi{1 — codAym)
i<j

3

l . . .
T = Ti= > > Ay = BiB)? = (%) (1 — cosA,m)} coupled spins but not in the case of three coupled spins. T
i< coherence transfer functioils, ., (see Fig. 3 and Table 3) are
5 4 in general more complicated than the corresponding polari:
T = Ti= >, 5 ey = viy))? = (BiBy) H1 — codAym)} tion transfer function3,,_,, (see Fig. 2 and Table 2). Wherea:
i< only positive polarization transfer functiofis,,.,, are found
°1 ' for three cylindrically coupled spins 1/2, the coherence trans
Thistotay-tatsy = E 2 {(Bioy = cu)wiysin(a; 7) functionsT,,, ., can also become negative, except for the ca
N of isotropic mixing whereT,, ., = T,._,, is always positive
1 . (24, 34, 47.
Tiistnday—tadyy = 5 1(vie = aypwytsin(Aj ' ' . . . . .
ety 13 % 2 (e = aiy)wisin(47) In order to introduce a concise notation for the discussion
s the transfer efficiency under various combinations of cylindr
Tiotntsytsdn = D 5 (0B = Bry)wy}sin(A;7) cal coupling tensors, we rewrité, (Eq. [3]) in the form (0).
i<j
1
Titliad st 1)) = E 7 {(Biy; + viB)wiH1 — cog A7)} 8 o .
i<i Hey=2m > Jitsij(lilix + Tiyly) + silil}, [18]
2y i<
T talid ot 1yl = E 2 {ay; + yioy)wiH1 — cog A7)}
i<j
g where the planar and longitudinal coupling constants are |
Titsttutzce i) = 2 7 (@B + BiapwiH{1 — codAn)} lated to the fictitious coupling constants by Ji = s{J; and
i<i Ji = s;jJ;, respectively. In analogy to previous definition:

(9, 10, 35 of quality factors that reflect both the amplitude an
the duration of the transfer frorh, to I,,, we define the
transfer efficiencyny for cylindrical mixing as

Note.«;, Bi, andy; are defined in Eq. [10] and; = o — BiBj — ViYj-

related toB by a 90°z rotation. Except for constant terms, all e =k max{| T, _..(1]exp(— 7]}, [19]
polarization transfer function,,, g can be expressed as com 0

binations of three harmonic terms with oscillation frequencies

A1, Ajs, andA,; corresponding to differences of the eigenvathereK is 1 (or —

DifT, max) IS POSitive (or negative
uesAs, A, andi, (c.f. Eq. [7]): Vi T, (Tned IS POSItive ( gative)

at the mixing timer,,, where| T, _,,(7)[exp(—7|J4|) assumes
its maximum value. For a given set of planar and longitudin
Aj =N — A [17]  scaling factors” = {sf,, s, sh} and st = {sb,, sk, sto} the
transfer efficiencynf, depends only on the relative coupling
In the transfer function§, _g of transverse magnetization,constantsl,s/J;, andJ,s/J.,, which makes it possible to plot
three additional harmonic terms occur with oscillation frequetwo-dimensional transfer efficiency mag$,(Jis/J12, J23/J12)
ciesAy = Ay — Ay withi = 1, 2, and 3 (c.f. Egs. [4] and [7]). (20).
Figures 4 and 5 show longitudinal and transverse trans
TRANSEER EEEICIENCIES efficiency mapsni, andni, = n3, for a number of character
istic sets of scaling factors”™ and s". Figures 4A and 5A
Examples of characteristic transfer functidns.; andT, .z correspond to the case of isotropic mixing for a two-spi
are shown in Figs. 2 and 3, respectively. As in Fig. 1, the ratgystem whereni, = n1, = 0.62 (L0). In Figs. 4B and 5B,
J;;13§ of longitudinal and planar coupling constants was variezbins 1 and 2 are isotropically coupled whereas spin pairs 1
between—2 (A-A") and 4 (F-F). The planar coupling con- and 2—3 have a purely longitudinal coupling tensti)( Fig-
stants were chosen to B8, = —10 Hz,J7; = 4.6 Hz, andl}, ures 4C and 5C represent an intermediate case between F
= 11 Hz in order to simplify the comparison with previously4B and 5B and the case where all three spins are isotropice
presented theoreticall9, 34, 35 and experimental 190, 39 coupled (Figs. 4E and 5E). Figures 4D—4L and 5D-5L repr
transfer functions. The analytical transfer functions are idensient a series of longitudinal and transverse transfer efficier
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TABLE 3
Coherence Transfer Functions T,,, s for a Three-Spin System under Cylindrical Mixing Conditions

3 3 3 3
1 1
Toen=Th= 2 ¥BI + 5 2 alcodhgn) +5 > > v] cody)
i=1 i=1 i=1 j=i+1
3 13 13
Tiyots = T2 = z yiBiai + 5 E BiaicogAgT) + 5 21 2 v (viag + yja)cOg A7)
=

i=1 i=1 j=it+l

3

3

3 3 3
1 1
Tty = T13 = E YiBia; + 2 E YiaiCOS AgiT) + > E E vi(Biaj + Bja;)Cog A7)

i=1 i=1 i=1 j=i+1

3 3 3
Tty = 2 Bia;sin(Ag7) + E E vii(vieg — yja)Sin(A;7)
i-1 =1 j=i+1

3

3 3
Tty = 2 a?sin(AgT) + E E v (viBi — viBi)Sin(A;T)
i=1 i=1 j=i+1

3

3 3
Tty = 2 Yiaisin(AgT) + 2 E vi(Bio — Bja;)Sin(Aj)
i=1 i=1 j=i+1

3

3 3
Tty = z a?sin(AgT) — E E vi(viBj — vBi)Sin(A;7)
i=1 i=1 j=i+1

3

anlzzlay = z Yieisin(AgT) — z E Vij(BiaJ - Bjai)Sin(AijT)

i=1 i=1 j=i+1

T|1x~>|31|2y: z B|a|5in(A0|T) - 2 E Vl](%aj - ’Yja,)Sin(A”T)

i=1 i=1 j=i+1

Tiotndalsy = 2 2 YiBi(y:+ Bf — al) +2 E E vii(viv; + BiBj — aja;))cod A7)

i=1 =1 j=i+1

Tipotniylsy = 2 E YiBi(y:— Bf+ af) +2 E E vii(viv; — BiBj + aja;)cod A7)

i=1 i=1 j=i+1

3 3 3
Tiooiniylsy = 2 E ViBi(—=yi+ BE+ ad) + 2 E E vi(—viy; + BiBj + aja)cog A7)

i=1 i=1 j=i+1

3 3 3 3
Titntons = —4 E yiBE+ 2 2 a?cogAyT) — 2 E E VSCOS(AU'T)

i1 i-1 =1 j=i+1

3 3 3 3
Tiintims = —4 z viBiai + 2 E BiajcogAgT) — 2 E 2 vi(yi + ) COL A7)

i=1 i=1 =1 j=i+1

3 3 3 3
Tiotntin = —4 z YiBlai + 2 E YiaiCoOYAgT) — 2 E E vi(Biag + Bja;)cog A7)

i=1 i=1 =1 j=i+1

Note.«a;, Bi, andy; are defined in Eq. [10] and; = (i + «;Bi).

maps where all planar scaling factors are held conssint passive couplingsl,; and J,; are approximately identical.
1) whereas the (identical) longitudinal scaling factoss, = Figures 4M—40 and 5M-50 correspond to the cases w
S1s = Ssy) are varied between 5 and5. This series includes (effective) planar coupling terms for spin pairs 1-3 and 2-
the ideal cases of isotropic (Figs. 4E and 5E), planar (Figs. 4here the coupling tensor for spin pair 1-2 is changed fro
and 5G), and dipolar (Figs. 4K and 5K) mixing for threesotropic (Figs. 4M and 5M) to dipolar (Figs. 40 and 50) witl
coupled spins 1/2. If the coupling tensors are dominated by intermediate case shown in Figs. 4N and 5N. Correspond
longitudinal coupling terms (cf. Figs. 4D, 4L, 5D, and 5L) thenaps are shown in Figs. 4P—4R and 5P-5R, except that h
transfer of polarization and coherence between the spin piie coupling tensor for spin pair 1-3 is changed from isotrop
1-2 is effectively truncated except for some cases where itiégs. 4P and 5P) to dipolar (Figs. 4R and 5R) while plan:
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FIG. 2. Polarization transfer functiori; = T, —;, of a spin system consisting of three coupled spins 1/2 Wjth= — 10 Hz,J}; = 4.6 Hz, andly, =
11 Hz under various cylindrical mixing conditions. (ADAJ; = —2JF (dipolar mixing, cf. 85)), (B-B") J; = —J{, (C-C) J; = — 3J, (D-D") J; = 0 (planar
mixing, cf. (19)), (E-&) J; = J (isotropic mixing, cf. 84)), and (F-F) J; = 4J;.
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FIG. 3. Coherence transfer functiofi§ = T~ Of @ spin system consisting of three coupled spins 1/2 Wjth= —10 Hz,J}; = 4.6 Hz, andl}, = 11
Hz under various cylindrical mixing conditions. (A2A); = —2JF (dipolar mixing, cf. 85)), (B-B") J; = —J{, (C-C) J; = — 3J{, (D-D") J; = 0 (planar
mixing), (E-E) Jij = J§ (isotropic mixing, cf. 84)), and (F-F) J; = 4J;.



176 LUY AND GLASER

A
g s g
“]23“12 J23“12
25 25
0 0
2.5 2.5
-5 — -5

5 5
Jaaths ozt
25 25
0 0
-2.5 -2.5

-5 5
5
Joa Mz
25
0

25 5
hiathy i3ty 13t

FIG. 4. Polarization transfer efficiency maps showing the quality fagte(Eq. [19]) as a function of the relative coupling constahtgJ,, andJ,s/J,, for
a number of characteristic cases of cylindrical mixing defined by the set of planar and longitudinal scalingsfeatars™ (cf. Eq. [18]): (A)s” = {1, 0, 0},
s- = {1, 0, 0} (corresponding to isotropic mixing for a two-spin system whegte = 0.62[10]), (B) " = {1, 0, 0}, s- = {1, 1, 1}, (C) 8" = {1, 0.5, 0.5},
s ={1, 1, 1}. In (D)—(R) the planar scaling factors ase = {1, 1, 1} and the longitudinal scaling factors are (&)= {5, 5, 5}, (E) s = {1, 1,1}, (F) s- =
{0.5, 0.5, 0.5}, (G)s" = {0, 0, 0}, (H) s = {—0.5,-0.5,—-0.5}, (I) s" = {—1, -1, -1}, J) s" = {—1.5,-1.5,-1.5}, (K) s" = {—2, -2, -2}, (L) s" =
{-5,-5,-5}, (M) s- ={1,0,0}, (N) s ={-0.5,0, 0}, (0)s- ={-2,0,0}, (P)s ={0, 1, 0}, (Q) s" = {0, —0.5, 0}, (R)s" = {0, —2, 0}. The contour
level increment is 0.1; in black areas=0 ni, = 0.1.

(effective) coupling terms exist for spin pairs 1-2 and 2-3. lspins with an (effective) isotropic and/or dipolar couplin
practice, the maps shown in Figs. 4M—40, 4P-4R, 5M-5@nsor and one additional heteronuclear spin. For such exf
and 5P-5R represent for example the case of heteronucleaents, Figs. 4M—-40 and 5M-50 reflect homonucle
planar mixing sequences, such as WALTZ-48)(or DIPSI-2 whereas Figs. 4P—4R and 5P-5R reflect heteronuclear tran
(49) applied to a spin system consisting of two homonucleafficiencies.
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FIG. 4—Continued

CONCLUSION of isotropic mixing @4, 34, 47), only positive polarization
transfer functionsT,,,_,, were found. Based on the quality
For three spins 1/2, analytical polarization and coherenf&ctors i, and i, (Eq. [19]) transfer efficiency maps were
transfer functions were derived for general cylindrical mixinghown in Figs. 4 and 5 for special cases of interest. Howev
conditions, which result, e.g., from superpositions of scalar atite derived analytical transfer functions also apply to tf
(residual) dipolar coupling tensors. The general solutions igeneral case of Hartmann—Hahn spectroscopy of partially ¢
clude the special cases of dipolar, isotropic, planar, and longiated samples, where residual dipolar coupling constants
tudinal mixing. Whereas coherence transfer function®t correlated with the size of scalar couplings and hen
Tioei, = Ti—1, Can also become negative (with the exceptioarbitrary ratiosJ;/J; are possible for each spin pajt In the
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FIG.5. Coherence transfer efficiency maps showing the quality fagtor 11, (Eqg. [19]) as a function of the relative coupling constahtsJ,, andJ,s/J;,
for a number of characteristic cases of cylindrical mixing defined by the set of planar and longitudinal scalingsfaaars- (cf. Eq. [18]): (A)s” = {1, 0,
0}, s" = {1, 0, 0} (corresponding to isotropic mixing for a two-spin system whefe= 0.62[10]), (B) s’ = {1, 0, 0}, s* = {1, 1, 1}, (C) s’ = {1, 0.5, 0.5},
s ={1, 1, 1}. In (D)~(R) the planar scaling factors ase = {1, 1, 1} and the longitudinal scaling factors are (&)= {5, 5,5}, (E) s = {1, 1,1}, (F) s* =
{0.5, 0.5, 0.5}, (G)s- = {0, 0, 0}, (H) s" = {~0.5,-0.5,—0.5}, () - = {—1, -1, -1}, @) 8" = {~1.5,-1.5,—1.5}, (K) s- = {-2, -2, -2}, (L) & =
{-5,-5,-5}, (M) s- ={1,0,0}, (N) s ={-0.5,0, 0}, (0)s- ={-2,0, 0}, (P)s ={0, 1, 0}, (Q) s" = {0, —0.5, 0}, (R)s" = {0, —2, 0}. The contour
level increment is 0.1; in black areés},| = |n}] = 0.1. Negative levels are indicated by dashed contour lines.

mixing period of homonuclear Hartmann—Hahn experimentsrm of Eq. [1] if the axis labels &, y, z} are replaced by §,

applied to samples with residual dipolar coupling®3)( z, x} and with a reduced effective dipolar coupling constar
WALTZ-16 (48) and DIPSI-2 49) sequences can be used td.; = —D/2 (50). Hence, the analytical transfer function:
create energy matched conditions. Similar to, éwadiation, summarized in Tables 1, 2, and 3 are also valid for the
these sequences create effective coupling terms that haverttieing sequences if the axis labels are permuted and if in E
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[2] the dipolar coupling constants are replaced by the scaled
effective dipolar coupling constani,. It should also be kept

in mind that for a given multiple-pulse sequence the form
the effective coupling tensors depends in general also on

ﬁ“\tung.

offsets of the coupled spin8%). The derived transfer functions
form a theoretical basis to understand the transfer dynamics
under cylindrical mixing conditions, which are created, for
example, in Hartmann—Hahn experiments in the presence @f s. R. Hartmann and E. L. Hahn, Nuclear double resonance in the

residual dipolar couplings.

rotating frame, Phys. Rev. 128, 2042-2053 (1962).
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