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rise to so-called cylindrical mixing Hamiltonians in dipolar cou-
pling spectroscopy. General analytical polarization and coherence
transfer functions are presented for three cylindrically coupled
spins 1

2 under energy-matched conditions. In addition, the transfer
efficiency is analyzed as a function of the relative coupling con-
stants for characteristic special cases. © 2001 Academic Press
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INTRODUCTION

Homonuclear and heteronuclear coherence and polariz
transfer under energy-matched conditions is an importan
in both liquid and solid state NMR (1–9). Such homonuclea

nd heteronuclear Hartmann–Hahn type experiments c
lassified according to the form of the coupling tensors in
ffective mixing Hamiltonian (9, 10). For example, isotrop
oupling tensors are created by heteronuclear isotropic m
equences (9, 11, 12) and by most homonuclear Hartman
ahn sequences if applied to scalar coupled spin sys

5, 6, 9). Effective planar coupling tensors (13) are typical fo
ost heteronuclear Hartmann–Hahn experiments (1, 7, 9) and

or homonuclear Hartmann–Hahn experiments that are b
n RF irradiation at multiple frequencies (14–19). Recently
esidual dipolar couplings of partially ordered systems h
ound wide use in high-resolution NMR of biomolecules (20–
3). The simultaneous presence of isotropic couplings
esidual dipolar couplings can give rise to a large variet
ffective coupling tensors.
In principle, polarization and coherence transfer funct

hat describe the dynamics of polarization and coherence
er can be simulated numerically for arbitrary coupling ten
8, 9, 24–31). However, analytical transfer functions are a
ighly desirable in order to understand the characteristic t

er dynamics. For a two-spin system, analytical coherence
olarization transfer functions are known for a large rang
ractically relevant effective coupling tensors (9, 23, 32, 33).
or three-spin systems with arbitrary coupling constants,
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ar, and dipolar effective coupling tensors (19, 34, 35). For
pin systems consisting of four coupled spins 1/2 with arbi
oupling constants, analytical transfer functions are
nown for isotropic mixing experiments (36, 37). In homo-
uclear Hartmann–Hahn experiments of partially oriented
les (23), the size of scalar coupling constants is typically

he same order of magnitude as the size of the residual d
ouplings. The class of effective coupling tensors create
he simultaneous presence of isotropic and dipolar coup
orresponds to the anisotropic Ising–Heisenberg model38)
nd has also been denoted cylindrical coupling (33). For two
ylindrically coupled spins 1/2, the derivation of analyt
ransfer functions (9, 23, 33) is relatively simple because
erms of the coupling Hamiltonian mutually commute. Ho
ver, this is not the case for more than two cylindric
oupled spins. In the following, analytical polarization
oherence transfer functions are presented for spin sy
onsisting of three spins 1/2 under general cylindrical mi
ondition with arbitrary coupling constants. In addition,
fficiency of polarization and coherence transfer is anal

or a number of characteristic coupling topologies.

TWO-SPIN CASE

For a two-spin system the anisotropic Ising–Heisenberg38)
or cylindrical (33) coupling term can be expressed in the fo
(10)

*cyl 5 2pJP~I xSx 1 I ySy! 1 2pJLI zSz, [1]

with the planar and longitudinal coupling constantsJP andJL,
respectively. ForJP 5 0 Eq. [1] reduces to the longitudin
coupling term 2pJLI zSz (9, 10) that is characteristic for th
weak coupling limit and that corresponds to the coupling
of the standard Ising model Hamiltonian (38–40). For JL 5 0
he coupling term*cyl represents a planar mixing Hamilton
(9, 10, 13) which corresponds to the coupling terms in theXY
model (42). For JL 5 JP the coupling term*cyl represents a
1090-7807/01 $35.00
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170 LUY AND GLASER
to the coupling term in the Heisenberg or Heisenberg–D
Van Vleck model Hamiltonian (41, 43). For JL 5 22JP the
Hamiltonian*cyl represents a dipolar coupling term (44).

The combination of an (effective) isotropic coupling te
* iso 5 2pJ{ I xSx 1 I ySy 1 I zSz} and an (effective) dipola
coupling term of the form*dip 5 2pD{2 I zSz 2 I xSx 2 I ySy}
also results in a cylindrical mixing Hamiltonian*cyl in the
form of Eq. [1] with

JL 5 J 1 2D, JP 5 J 2 D. [2]

For a two-spin system the coherence and polarization tra
functions for cylindrical mixing can be derived in a straig
forward way (9, 23, 33). A summary of the relevant trans
functions using the above nomenclature is given in Tab
For a longitudinal initial operatorA 5 I z, the transfer function

re independent of the longitudinal coupling constantJL be-
ause the coupling term 2pJLI zSz commutes both withI z and

with 2pJP (I xSx 1 I ySy). On the other hand, transfer functio
for the transverse initial operatorsA 5 I x or I y depend on bot

P and JL. This is illustrated in Fig. 1where characterist
transfer functionsTI z3Sz andTI x3Sx are shown.

THREE-SPIN CASE

For a spin system consisting of three coupled spins 1/2
anisotropic Ising–Heisenberg or cylindrical mixing Hami
nian has the form

*cyl 5 2p O
i,j

3

J ij
P$I ixI jx 1 I iyI jy% 1 2p O

i,j

3

J ij
LI izI jz, [3]

with the effective planar and longitudinal coupling constantJij
P

and Jij
L, respectively. In analogy to the case of three cou

spins under planar or dipolar mixing conditions, polariza
transfer functions can be determined if the eigenvalues
eigenfunctions of*cyl are known (19, 35). As *cyl commute
with Fz 5 I 1z 1 I 2z 1 I 3z, the mixing Hamiltonian assumes

TABLE 1
Coherence and Polarization Transfer Functions TA3B for Two

Spins I and S under Cylindrical Mixing Conditions

TI x3I x 5 TI y3I y 5 1 2 sin(pJLt)sin(pJPt)
TI z3I z 5 1 2 sin2(pJPt)
TI x3Sx 5 TI y3Sy 5 sin(pJLt)sin(pJPt)
TI z3Sz 5 sin2(pJPt)

TIy32I xSz 5 2TIx32I ySz 5
1

2
$sin~p~JL 1 JP!t! 1 sin~p~JL 2 JP!t!%

TIx32I zSy 5 2TIy32I zSx 5
1

2
$sin~p~JL 1 JP!t! 2 sin~p~JL 2 JP!t!%

TIz32I ySx 5 2TIz32I xSy 5
1

2
sin~2pJPt!
–

fer

1.

he

d
n
nd
block structure in the basis of the product functionsuaaa&
(with magnetic quantum numberm 5 3/ 2), ubaa&, uaba&,
uaab& (with m 5 1/ 2), uabb&, ubab&, ubba& (with m 5
2 1/ 2), and ubbb& (with m 5 2 3/ 2). Each block onl
connects product functions with equal magnetic quantum
ber m. For m 5 6 3/ 2, the resulting 13 1 blocks are

* cyl
~3/ 2! 5 * cyl

~23/ 2! 5
p

2
~ J12

L 1 J13
L 1 J23

L ! 5 l0, [4]

herel0 corresponds to two degenerate eigenvalues of*cyl.
For m 5 6 1/ 2, the blocks have the form

* cyl
~1/ 2! 5 * cyl

~21/ 2! 5 pS S1 J12
P J13

P

J12
P S2 J23

P

J13
P J23

P S3

D , [5]

FIG. 1. Polarization and coherence transfer functions of a two-spin sy
under various cylindrical mixing conditions (see Eq. [1]). (A) The polariza
transfer functionTI z3Sz is independent ofJL and only depends on the plan
oupling constantJP. (B) In contrast, the coherence transfer functionsTI x3Sx 5

TI y3Sy depend not only onJP but also onJL. The curves represent characteri
oherence transfer functions forJL 5 22JP (dipolar mixing, – - - –), JL 5

2JP (— — —), JL 5 0 (planar mixing, - - -),JL 5 JP (isotropic mixing, —)
andJL 5 4JP (– – –).
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171SUPERPOSITION OF SCALAR AND RESIDUAL DIPOLAR COUPLINGS
S i 5
J jk

L 2 J ij
L 2 J ik

L

2
[6]

for { ijk } 5 {123}, {231}, and {312} and with Jij
L 5 Jji

L and
Jij

P 5 Jji
P. The eigenvalues of these 33 3 matrices can be foun

using Cardan’s formula (45):

l1 5 2
l0

3
1 4p Îupu

3
cosSw

3D
l2,3 5 2

l0

3
2 4p Îupu

3
cosSw 7 p

3 D , [7]

with

w 5 arccos1
2q

2Îupu
3

32 , [8]

p 5
1

12 O
i,j

3

S iS j 2 ~S i!
2 2 3~ J ij

P! 2

and

q 5
1

3 HJ12
P S3 1 J13

P S2 1 J23
P S1 2

1

4
J12

P J13
P J23

P 2
1

3
S1S2S3

1 O
iÞj

3

S iS 8

3
S iS j 2

1

2
J ij

PD 2
1

36 O
i

3

~S i!
3J . [9]

For each eigenvaluel i (Eq. [7]) the three componentsa i ,
b i , and g i of the corresponding normalized eigenvectors
given by

a i 5 c i
~123!/ni, b i 5 c i

~231!/ni, g i 5 c i
~312!/ni, [10]

ith

c i
~lmn! 5 Jmn

P ~ Jmn
P 2 J lm

P 2 J ln
P ! 2 SmSn 1 SmJ ln

P 1 SnJ lm
P

1 ~Sm 2 J lm
P 1 Sn 2 J ln

P !~l i/p! 2 ~l i/p! 2 [11]

nd

ni 5 Î~c i
~123!! 2 1 ~c i

~231!! 2 1 ~c i
~312!! 2. [12]
e

1
(lmn) 5 c2

(lmn) 5 c3
(lmn) 5 0 for all combinations (lmn), Eq. [11]

is to be replaced by

c i
~123! 5 S2J13

P 2 J12
P J23

P 2 J13
P ~l i/p!

c i
~231! 5 S1J23

P 2 J12
P J13

P 2 J23
P ~l i/p!

c i
~312! 5 ~ J12

P ! 2 2 S1S2 1 ~S1 1 S2!~l i/p! 2 ~l i/p! 2.

[13]

Equations [10]–[13] represent the eigenvector componen
all cases where the eigenvalues (Eq. [7]) are nondegenera
l1 Þ l2 Þ l3 Þ l1. In the practical calculation of transf
functions this can always be achieved by a slight variatio
the coupling constants. Based on the components of the
envectors (Eq. [10]), an orthonormal eigenbasis of the m
Hamiltonian*cyl is given by

c1 5 uaaa&

c2 5 a1ubaa& 1 b1uaba& 1 g1uaab&

c3 5 a2ubaa& 1 b2uaba& 1 g2uaab&

c4 5 a3ubaa& 1 b3uaba& 1 g3uaab&

c5 5 a1uabb& 1 b1ubab& 1 g1ubba&

c6 5 a2uabb& 1 b2ubab& 1 g2ubba&

c7 5 a3uabb& 1 b3ubab& 1 g3ubba&

c8 5 ubbb&. [14]

n this eigenbasis, transfer functions

TA3B~t! 5
Tr $B†U~t! AU†~t!%

Tr $B†B%
[15]

between two operatorsA andB can be calculated in a straig
forward way because the propagator

U~t! 5 exp$2i*cylt% [16]

is diagonal with (U) 11 5 (U) 88 5 exp{2il 0t}, ( U) 22 5
(U) 55 5 exp{2il 1t}, ( U) 33 5 (U) 66 5 exp{2il 2t}, and
(U) 44 5 (U) 77 5 exp{2il 3t}.

With the help of the algebraic programMathematica(46) we
derived compact analytical expressions for coherence an
larization transfer functions of practical interest. All nonz
polarization and coherence transfer functionsTA3B for A 5 I 1z

andA 5 I 1x are summarized in Tables 2and 3, respectively. A
the cylindrical mixing Hamiltonian is invariant under rotatio
around thez axis, the transfer functionsTI 1x3B are identical to
the transfer functionsTI 1y3B9, where the target operatorB9 is
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172 LUY AND GLASER
related toB by a 90°z rotation. Except for constant terms,
olarization transfer functionsTI kz3B can be expressed as co-
inations of three harmonic terms with oscillation frequen
12, D13, andD23 corresponding to differences of the eigen-
esl1, l2, andl3 (c.f. Eq. [7]):

D ij 5 l i 2 l j. [17]

In the transfer functionsTI kx3B of transverse magnetizatio
three additional harmonic terms occur with oscillation frequ
ciesD 0i 5 l 0 2 l i with i 5 1, 2, and 3 (c.f. Eqs. [4] and [7

TRANSFER EFFICIENCIES

Examples of characteristic transfer functionsTI z3B andTI x3B

are shown in Figs. 2 and 3, respectively. As in Fig. 1, the
Jij

L/Jij
P of longitudinal and planar coupling constants was va

between22 (A–A0) and 4 (F–F0). The planar coupling con
stants were chosen to beJ12

P 5 210 Hz,J13
P 5 4.6 Hz, andJ23

P

5 11 Hz in order to simplify the comparison with previou
presented theoretical (19, 34, 35) and experimental (19, 34)
ransfer functions. The analytical transfer functions are id

Polarization Transfer Functions TI1z3B for a Three-Spin System
under Cylindrical Mixing Conditions

TI1z3I1z 5 T11
z 5 1 2 O

i,j

3
1

2
wij

2$1 2 cos~D ijt!%

TI1z3I2z 5 T12
z 5 O

i,j

3
1

2
$~a ia j 2 b ib j!

2 2 ~g ig j!
2%~1 2 cos~D ijt!%

TI1z3I3z 5 T12
z 5 O

i,j

3
1

2
$~a ia j 2 g ig j!

2 2 ~b ib j!
2%$1 2 cos~D ijt!%

TI1z3I1xI2y2I2xI1y 5 O
i,j

3
1

2
$~b ia j 2 a ib j!wij%sin~D ijt!

TI1z3I1xI3y2I3xI1y 5 O
i,j

3
1

2
$~g ia j 2 a ig j!wij%sin~D ijt!

TI1z3I2xI3y2I3xI2y 5 O
i,j

3
1

2
$~g ib j 2 b ig j!wij%sin~D ijt!

TI1z3I1z~I2xI3x1I2yI3y! 5 O
i,j

3
1

4
$~b ig j 1 g ib j!wij%$1 2 cos~D ijt!%

TI1z3I2z~I1xI3x1I1yI3y! 5 O
i,j

3
1

4
$~a ig j 1 g ia j!wij%$1 2 cos~D ijt!%

TI1z3I3z~I1xI2x1I1yI2y! 5 O
i,j

3
1

4
$~a ib j 1 b ia j!wij%$1 2 cos~D ijt!%

Note.a i , b i , andg i are defined in Eq. [10] andwij 5 a ia j 2 b ib j 2 g ig j .
s

-

io
d

ti-

ically using the program SIMONE (29) (data not shown).
In contrast to the case of two cylindrically coupled spins

Fig. 1A), the transfer of polarizationTI kz3I lz does depend on th
atio Jij

L/Jij
P of longitudinal and planar coupling constants in

case of three coupled spins (cf. Fig. 2), because the plana
longitudinal coupling terms only commute in the case of
coupled spins but not in the case of three coupled spins
coherence transfer functionsTI kx3I lx (see Fig. 3 and Table 3) a
in general more complicated than the corresponding pola
tion transfer functionsTI kz3I lz (see Fig. 2 and Table 2). Where
only positive polarization transfer functionsTI kz3I lz are found
for three cylindrically coupled spins 1/2, the coherence tran
functionsTI kx3I lx can also become negative, except for the
of isotropic mixing whereTI kx3I lx 5 TI kz3I lz is always positiv
(24, 34, 47).

In order to introduce a concise notation for the discussio
the transfer efficiency under various combinations of cylin
cal coupling tensors, we rewrite*cyl (Eq. [3]) in the form (10).

*cyl 5 2p O
i,j

3

Jij$sij
P~I ixI jx 1 I iyI jy! 1 sij

LI izI jz%, [18]

here the planar and longitudinal coupling constants ar
ated to the fictitious coupling constantsJij by Jij

P 5 sij
PJij and

Jij
L 5 sij

LJij , respectively. In analogy to previous definitio
(9, 10, 35) of quality factors that reflect both the amplitude
the duration of the transfer fromI ka to I la, we define th
transfer efficiencyh kl

a for cylindrical mixing as

h kl
a 5 k max

t.0

$uTIka3I la
~t!uexp~2tuJklu!%, [19]

wherek is 1 (or 21) if TI ka3I la (tmax) is positive (or negative
at the mixing timetmax whereuTI ka3I la(t)uexp(2tuJklu) assume
ts maximum value. For a given set of planar and longitud
caling factorssP 5 { s12

P , s13
P , s23

P } and sL 5 { s12
L , s13

L , s23
L } the

transfer efficiencyh12
a depends only on the relative coupl

constantsJ13/J12 andJ23/J12, which makes it possible to pl
two-dimensional transfer efficiency mapsh 12

a ( J13/J12, J23/J12)
(10).

Figures 4 and 5 show longitudinal and transverse tra
efficiency mapsh 12

z andh 12
x 5 h 12

y for a number of characte-
istic sets of scaling factorssP and sL. Figures 4A and 5A
correspond to the case of isotropic mixing for a two-s
system whereh 12

z 5 h 12
x 5 0.62 (10). In Figs. 4B and 5B

spins 1 and 2 are isotropically coupled whereas spin pair
and 2–3 have a purely longitudinal coupling tensor (10). Fig-

res 4C and 5C represent an intermediate case between
B and 5B and the case where all three spins are isotrop
oupled (Figs. 4E and 5E). Figures 4D–4L and 5D–5L re
ent a series of longitudinal and transverse transfer effic
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maps where all planar scaling factors are held constant (skl
P 5

) whereas the (identical) longitudinal scaling factors (s12
L 5

s13
L 5 s23

L ) are varied between 5 and25. This series include
the ideal cases of isotropic (Figs. 4E and 5E), planar (Figs
and 5G), and dipolar (Figs. 4K and 5K) mixing for th
coupled spins 1/2. If the coupling tensors are dominate
longitudinal coupling terms (cf. Figs. 4D, 4L, 5D, and 5L)
transfer of polarization and coherence between the spin
1–2 is effectively truncated except for some cases wher

Coherence Transfer Functions TI1x3B for a Three

TI1x3I1x 5 T11
x 5 O

i51

3

g i
2b i

2 1
1

2 O
i51

3

a i
2 cos~D

TI1x3I2x 5 T12
x 5 O

i51

3

g i
2b ia i 1

1

2 O
i51

3

b ia ico

TI1x3I3x 5 T13
x 5 O

i51

3

g ib i
2a i 1

1

2 O
i51

3

g ia icos

TI1x3I1zI2y 5 O
i51

3

b ia isin~D0it! 1 O
i51

3 O
j5i11

3

n ij~g

TI1x3I2zI1y 5 O
i51

3

a i
2sin~D0it! 1 O

i51

3 O
j5i11

3

n ij~g ib

TI1x3I1zI3y 5 O
i51

3

g ia isin~D0it! 1 O
i51

3 O
j5i11

3

n ij~b

TI1x3I3zI1y 5 O
i51

3

a i
2sin~D0it! 2 O

i51

3 O
j5i11

3

n ij~g ib

TI1x3I2zI3y 5 O
i51

3

g ia isin~D0it! 2 O
i51

3 O
j5i11

3

n ij~b

TI1x3I3zI2y 5 O
i51

3

b ia isin~D0it! 2 O
i51

3 O
j5i11

3

n ij~g

TI1x3I1xI2yI3y 5 2 O
i51

3

g ib i~g i
2 1 b i

2 2 a i
2! 1 2 O

i5

3

TI1x3I2xI1yI3y 5 2 O
i51

3

g ib i~g i
2 2 b i

2 1 a i
2! 1 2 O

i5

3

TI1x3I3xI1yI2y 5 2 O
i51

3

g ib i~2g i
2 1 b i

2 1 a i
2! 1 2

TI1x3I1xI2zI3z 5 24 O
i51

3

g i
2b i

2 1 2 O
i51

3

a i
2cos~D0it

TI1x3I2xI1zI3z 5 24 O
i51

3

g i
2b ia i 1 2 O

i51

3

b ia icos~D

TI1x3I3xI1zI2z 5 24 O
i51

3

g ib i
2a i 1 2 O

i51

3

g ia icos~D

Note.a i , b i , andg i are defined in Eq. [10] andn ij 5 (a ib j 1 a jb i).
G

y

air
he

passive couplingsJ13 and J23 are approximately identica
Figures 4M–4O and 5M–5O correspond to the cases
(effective) planar coupling terms for spin pairs 1–3 and
where the coupling tensor for spin pair 1–2 is changed
isotropic (Figs. 4M and 5M) to dipolar (Figs. 4O and 5O) w
an intermediate case shown in Figs. 4N and 5N. Correspo
maps are shown in Figs. 4P–4R and 5P–5R, except tha
the coupling tensor for spin pair 1–3 is changed from isotr
(Figs. 4P and 5P) to dipolar (Figs. 4R and 5R) while pla

in System under Cylindrical Mixing Conditions

! 1
1

2 O
i51

3 O
j5i11

3

n ij
2 cos~D ijt!

it! 1
1

2 O
i51

3 O
j5i11

3

n ij~g ia j 1 g ja i!cos~D ijt!

it! 1
1

2 O
i51

3 O
j5i11

3

n ij~b ia j 1 b ja i!cos~D ijt!

2 g ja i!sin~D ijt!

g jb i!sin~D ijt!

2 b ja i!sin~D ijt!

g jb i!sin~D ijt!

2 b ja i!sin~D ijt!

2 g ja i!sin~D ijt!

i11

3

n ij~g ig j 1 b ib j 2 a ia j!cos~D ijt!

i11

3

n ij~g ig j 2 b ib j 1 a ia j!cos~D ijt!

O
j5i11

3

n ij~2g ig j 1 b ib j 1 a ia j!cos~D ijt!

2 O
i51

3 O
j5i11

3

n ij
2cos~D ijt!

2 2 O
i51

3 O
j5i11

3

n ij~g ia j 1 g ja i!cos~D ijt!

2 2 O
i51

3 O
j5i11

3

n ij~b ia j 1 b ja i!cos~D ijt!
-Sp

0it

s~D0

~D0

ia j

j 2

ia j

j 2

ia j

ia j

1

O
j5

1

O
j5

O
i51

3

! 2

0it!

0it!
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FIG. 2. Polarization transfer functionsTij
z 5 TI iz3I jz of a spin system consisting of three coupled spins 1/2 withJ12

P 5 2 10 Hz,J13
P 5 4.6 Hz, andJ23

P 5
11 Hz under various cylindrical mixing conditions. (A–A0) Jij

L 5 22Jij
P (dipolar mixing, cf. (35)), (B–B0) Jij

L 5 2Jij
P, (C–C0) Jij

L 5 2 1
2 Jij

P, (D–D0) Jij
L 5 0 (plana

mixing, cf. (19)), (E–E0) Jij
L 5 Jij

P (isotropic mixing, cf. (34)), and (F–F0) Jij
L 5 4Jij

P.
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FIG. 3. Coherence transfer functionsTij
x 5 TI ix3I jx of a spin system consisting of three coupled spins 1/2 withJ12

P 5 210 Hz,J13
P 5 4.6 Hz, andJ23

P 5 11
z under various cylindrical mixing conditions. (A–A0) Jij

L 5 22Jij
P (dipolar mixing, cf. (35)), (B–B0) Jij

L 5 2Jij
P, (C–C0) Jij

L 5 2 1
2 Jij

P, (D–D0) Jij
L 5 0 (plana

ixing), (E–E0) Jij
L 5 Jij

P (isotropic mixing, cf. (34)), and (F–F0) Jij
L 5 4Jij

P.
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(effective) coupling terms exist for spin pairs 1–2 and 2–3
practice, the maps shown in Figs. 4M–4O, 4P–4R, 5M–
and 5P–5R represent for example the case of heteron
planar mixing sequences, such as WALTZ-16 (48) or DIPSI-2
49) applied to a spin system consisting of two homonuc

FIG. 4. Polarization transfer efficiency maps showing the quality facth
a number of characteristic cases of cylindrical mixing defined by the se
sL 5 {1, 0, 0} (corresponding to isotropic mixing for a two-spin system

L 5 {1, 1, 1}. In (D)–(R) the planar scaling factors aresP 5 {1, 1, 1} and th
{0.5, 0.5, 0.5}, (G)sL 5 {0, 0, 0}, (H) sL 5 { 20.5, 20.5, 20.5}, (I) sL 5 {
{ 25, 25, 25}, (M) sL 5 {1, 0, 0}, (N) sL 5 { 20.5, 0, 0}, (O)sL 5 { 22, 0,
level increment is 0.1; in black areas 0# h 12

z # 0.1.
n
,

ear

r

spins with an (effective) isotropic and/or dipolar coup
tensor and one additional heteronuclear spin. For such e
iments, Figs. 4M–4O and 5M–5O reflect homonuc
whereas Figs. 4P–4R and 5P–5R reflect heteronuclear tr
efficiencies.

q. [19]) as a function of the relative coupling constantsJ13/J12 andJ23/J12 for
planar and longitudinal scaling factorssP andsL (cf. Eq. [18]): (A) sP 5 {1, 0, 0},
re12
z 5 0.62 [10]), (B) sP 5 {1, 0, 0}, sL 5 {1, 1, 1}, (C) sP 5 {1, 0.5, 0.5},
ngitudinal scaling factors are (D)sL 5 {5, 5, 5}, (E) sL 5 {1, 1, 1}, (F) sL 5
21, 21}, (J) sL 5 { 21.5, 21.5, 21.5}, (K) sL 5 { 22, 22, 22}, (L) sL 5
(P)sL 5 {0, 1, 0}, (Q) sL 5 {0, 20.5, 0}, (R)sL 5 {0, 22, 0}. The contou
or12
z (E
t of
wheh
e lo
21,
0},



en
ing

r an
s i
ong
ion
tio

n
ity
re
ever,
the
ori-

ts are
ence

177SUPERPOSITION OF SCALAR AND RESIDUAL DIPOLAR COUPLINGS
CONCLUSION

For three spins 1/2, analytical polarization and coher
transfer functions were derived for general cylindrical mix
conditions, which result, e.g., from superpositions of scala
(residual) dipolar coupling tensors. The general solution
clude the special cases of dipolar, isotropic, planar, and l
tudinal mixing. Whereas coherence transfer funct
TI kx3I lx 5 TI ky3I ly can also become negative (with the excep

FIG. 4—
ce

d
n-
i-
s
n

of isotropic mixing (24, 34, 47)), only positive polarizatio
transfer functionsTI kz3I lz were found. Based on the qual
factorsh 12

z and h 12
x (Eq. [19]) transfer efficiency maps we

shown in Figs. 4 and 5 for special cases of interest. How
the derived analytical transfer functions also apply to
general case of Hartmann–Hahn spectroscopy of partially
ented samples, where residual dipolar coupling constan
not correlated with the size of scalar couplings and h
arbitrary ratiosJij

P/Jij
L are possible for each spin pairij . In the
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mixing period of homonuclear Hartmann–Hahn experim
applied to samples with residual dipolar couplings (23),

ALTZ-16 (48) and DIPSI-2 (49) sequences can be used
reate energy matched conditions. Similar to cwx irradiation,

these sequences create effective coupling terms that ha

FIG. 5. Coherence transfer efficiency maps showing the quality factoh 12
x

for a number of characteristic cases of cylindrical mixing defined by the
}, sL 5 {1, 0, 0} (corresponding to isotropic mixing for a two-spin system
L 5 {1, 1, 1}. In (D)–(R) the planar scaling factors aresP 5 {1, 1, 1} and th

{0.5, 0.5, 0.5}, (G)sL 5 {0, 0, 0}, (H) sL 5 { 20.5, 20.5, 20.5}, (I) sL 5 {
{ 25, 25, 25}, (M) sL 5 {1, 0, 0}, (N) sL 5 { 20.5, 0, 0}, (O)sL 5 { 22, 0,
level increment is 0.1; in black areasuh 12

x u 5 uh 12
y u # 0.1. Negative levels
ts

the

form of Eq. [1] if the axis labels {x, y, z} are replaced by {y,
z, x} and with a reduced effective dipolar coupling cons
D eff 5 2D/ 2 (50). Hence, the analytical transfer functio
summarized in Tables 1, 2, and 3 are also valid for t
mixing sequences if the axis labels are permuted and if in

12
y (Eq. [19]) as a function of the relative coupling constantsJ13/J12 andJ23/J12

t of planar and longitudinal scaling factorssP andsL (cf. Eq. [18]): (A) sP 5 {1, 0,
hereh 12

x 5 0.62 [10]), (B) sP 5 {1, 0, 0}, sL 5 {1, 1, 1}, (C) sP 5 {1, 0.5, 0.5},
ngitudinal scaling factors are (D)sL 5 {5, 5, 5}, (E) sL 5 {1, 1, 1}, (F) sL 5
21, 21}, (J) sL 5 { 21.5, 21.5, 21.5}, (K) sL 5 { 22, 22, 22}, (L) sL 5
(P)sL 5 {0, 1, 0}, (Q) sL 5 {0, 20.5, 0}, (R)sL 5 {0, 22, 0}. The contou
indicated by dashed contour lines.
r5 h
se
w

e lo
21,
0},

are
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[2] the dipolar coupling constants are replaced by the sc
effective dipolar coupling constantsD eff. It should also be kep
in mind that for a given multiple-pulse sequence the form
the effective coupling tensors depends in general also o
offsets of the coupled spins (32). The derived transfer functio
orm a theoretical basis to understand the transfer dyna
nder cylindrical mixing conditions, which are created,
xample, in Hartmann–Hahn experiments in the presen
esidual dipolar couplings.

FIG. 5—
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